2 Different Models to Identify Shape

layer Structure

Model 1 - 5 Layer Structure

  • layer 1 - Conv2D - 32 filters, 3x3 kernel, ReLU
  • layer 2 - MaxPooling2D - (2x2)
  • layer 3 - Flatten
  • layer 4 - Dense - 64 units, ReLU
  • layer 5 - Dense - 3 units, softmax

Model 2 - 8 Layer Structure

  • layer 1 - Conv2D - 32 filters, (3x3) kernel, ReLU
  • layer 2 - MaxPooling2D - (2x2)
  • layer 3 - Conv2D - 64 filters, (3x3) kernel, ReLU
  • layer 4 - MaxPooling2D - (2x2)
  • layer 5 - Flatten
  • layer 6 - Dense - 128 units, ReLU
  • layer 7 - Dropout - rate (0.3)
  • layer 8 - Dense - 3 units, softmax

Training

Model 1

Accuracy: 0%

Loss: 0%

epochs: 0

training images: 0

Training not started.

Model 2

Accuracy: 0%

Loss: 0%

epochs: 0

training images: 0

Training not started.

Results

Model 1 Results

Model 2 Results

Test Model

Circle, square or triangle.


Please wait for the model to train, then wait again to load weights into its neural net—good things come to those who wait!.